Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 221: 99-109, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38307246

RESUMO

The process of cellular respiration occurs for energy production through catabolic reactions, generally with glucose as the first process step. In the present work, we introduce a novel concept for understanding this process, based on our conclusion that glucose metabolism is coupled to the pentose phosphate pathway (PPP) and extra-mitochondrial oxidative phosphorylation in a closed-loop process. According to the current standard model of glycolysis, glucose is first converted to glucose 6-phosphate (glucose 6-P) and then to fructose 6-phosphate, glyceraldehyde 3-phosphate and pyruvate, which then enters the Krebs cycle in the mitochondria. However, it is more likely that the pyruvate will be converted to lactate. In the PPP, glucose 6-P is branched off from glycolysis and used to produce NADPH and ribulose 5-phosphate (ribulose 5-P). Ribulose 5-P can be converted to fructose 6-P and glyceraldehyde 3-P. In our view, a circular process can take place in which the ribulose 5-P produced by the PPP enters the glycolysis pathway and is then retrogradely converted to glucose 6-P. This process is repeated several times until the complete degradation of glucose 6-P. The role of mitochondria in this process is to degrade lipids by beta-oxidation and produce acetyl-CoA; the function of producing ATP appears to be only secondary. This proposed new concept of cellular bioenergetics allows the resolution of some previously unresolved controversies related to cellular respiration and provides a deeper understanding of metabolic processes in the cell, including new insights into the Warburg effect.

2.
Adv Exp Med Biol ; 1438: 93-99, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37845446

RESUMO

A critically important step for the uptake and transport of oxygen (O2) in living organisms is the crossing of the phase boundary between gas (or water) and lipid/proteins in the cell. Classically, this transport across the phase boundary is explained as a transport by proteins or protein-based structures. In our contribution here, we want to show the significance of passive transport of O2 also (and in some cases probably predominantly) through lipids in many if not all aerobic organisms. In plants, the significance of lipids for gas exchange (absorption of CO2 and release of O2) is well recognized. The leaves of plants have a cuticle layer as the last film on both sides formed by polyesters and lipids. In animals, the skin has sebum as its last layer consisting of a mixture of neutral fatty esters, cholesterol and waxes which are also at the border between the cells of the body and the air. The last cellular layers of skin are not vascularized therefore their metabolism totally depends on this extravasal O2 absorption, which cannot be replenished by the bloodstream. The human body absorbs about 0.5% of O2 through the skin. In the brain, myelin, surrounding nerve cell axons and being formed by oligodendrocytes, is most probably also responsible for enabling O2 transport from the extracellular space to the cells (neurons). Myelin, being not vascularized and consisting of water, lipids and proteins, seems to absorb O2 in order to transport it to the nerve cell axon as well as to perform extramitochondrial oxidative phosphorylation inside the myelin structure around the axons (i.e., myelin synthesizes ATP) - similarly to the metabolic process occurring in concentric multilamellar structures of cyanobacteria. Another example is the gas transport in the lung where lipids play a crucial role in the surfactant ensuring incorporation of O2 in the alveoli where there are lamellar body and tubular myelin which form multilayered surface films at the air-membrane border of the alveolus. According to our view, the role played by lipids in the physical absorption of gases appears to be crucial to the existence of many, if not all, of the living aerobic species.


Assuntos
Pulmão , Oxigênio , Animais , Humanos , Pulmão/metabolismo , Alvéolos Pulmonares , Lipoproteínas , Gases/metabolismo , Água
3.
Open Biol ; 11(12): 210177, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34905702

RESUMO

There is a surprisingly high morphological similarity between multilamellar concentric thylakoids in cyanobacteria and the myelin sheath that wraps the nerve axons. Thylakoids are multilamellar structures, which express photosystems I and II, cytochromes and ATP synthase necessary for the light-dependent reaction of photosynthesis. Myelin is a multilamellar structure that surrounds many axons in the nervous system and has long been believed to act simply as an insulator. However, it has been shown that myelin has a trophic role, conveying nutrients to the axons and producing ATP through oxidative phosphorylation. Therefore, it is tempting to presume that both membranous structures, although distant in the evolution tree, share not only a morphological but also a functional similarity, acting in feeding ATP synthesized by the ATP synthase to the centre of the multilamellar structure. Therefore, both molecular structures may represent a convergent evolution of life on Earth to fulfill fundamentally similar functions.


Assuntos
Trifosfato de Adenosina/metabolismo , Cianobactérias/ultraestrutura , Bainha de Mielina/ultraestrutura , Tilacoides/ultraestrutura , Complexos de ATP Sintetase/metabolismo , Animais , Evolução Biológica , Cianobactérias/metabolismo , Metabolismo Energético , Humanos , Bainha de Mielina/metabolismo , Fosforilação Oxidativa , Tilacoides/metabolismo
4.
Neurochem Int ; 141: 104883, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33075435

RESUMO

The existence of different conductive patterns in unmyelinated and myelinated axons is uncertain. It seems that considering exclusively physical electrical phenomena may be an oversimplification. A novel interpretation of the mechanism of nerve conduction in myelinated nerves is proposed, to explain how the basic mechanism of nerve conduction has been adapted to myelinated conditions. The neurilemma would bear the voltage-gated channels and Na+/K+-ATPase in both unmyelinated and myelinated conditions, the only difference being the sheath wrapping it. The dramatic increase in conduction speed of the myelinated axons would essentially depend on an increment in ATP availability within the internode: myelin would be an aerobic ATP supplier to the axoplasm, through connexons. In fact, neurons rely on aerobic metabolism and on trophic support from oligodendrocytes, that do not normally duplicate after infancy in humans. Such comprehensive framework of nerve impulse propagation in axons may shed new light on the pathophysiology of nervous system disease in humans, seemingly strictly dependent on the viability of the pre-existing oligodendrocyte.


Assuntos
Axônios/fisiologia , Metabolismo Energético/fisiologia , Bainha de Mielina/fisiologia , Condução Nervosa/fisiologia , Potenciais de Ação/fisiologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/fisiologia , Animais , Junções Comunicantes/fisiologia , Humanos , Canais Iônicos/fisiologia
5.
Open Biol ; 10(10): 200224, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33081639

RESUMO

Most of the ATP to satisfy the energetic demands of the cell is produced by the F1Fo-ATP synthase (ATP synthase) which can also function outside the mitochondria. Active oxidative phosphorylation (OxPhos) was shown to operate in the photoreceptor outer segment, myelin sheath, exosomes, microvesicles, cell plasma membranes and platelets. The mitochondria would possess the exclusive ability to assemble the OxPhos molecular machinery so to share it with the endoplasmic reticulum (ER) and eventually export the ability to aerobically synthesize ATP in true extra-mitochondrial districts. The ER lipid rafts expressing OxPhos components is indicative of the close contact of the two organelles, bearing different evolutionary origins, to maximize the OxPhos efficiency, exiting in molecular transfer from the mitochondria to the ER. This implies that its malfunctioning could trigger a generalized oxidative stress. This is consistent with the most recent interpretations of the evolutionary symbiotic process whose necessary prerequisite appears to be the presence of the internal membrane system inside the eukaryote precursor, of probable archaeal origin allowing the engulfing of the α-proteobacterial precursor of mitochondria. The process of OxPhos in myelin is here studied in depth. A model is provided contemplating the biface arrangement of the nanomotor ATP synthase in the myelin sheath.


Assuntos
Trifosfato de Adenosina/biossíntese , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Animais , Retículo Endoplasmático/metabolismo , Metabolismo Energético , Humanos , Membranas Intracelulares/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Bainha de Mielina/metabolismo , Estresse Oxidativo , Células Procarióticas/metabolismo , Prótons , Relação Estrutura-Atividade
6.
Open Biol ; 9(4): 180221, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30966998

RESUMO

Understanding how biological systems convert and store energy is a primary purpose of basic research. However, despite Mitchell's chemiosmotic theory, we are far from the complete description of basic processes such as oxidative phosphorylation (OXPHOS) and photosynthesis. After more than half a century, the chemiosmotic theory may need updating, thanks to the latest structural data on respiratory chain complexes. In particular, up-to date technologies, such as those using fluorescence indicators following proton displacements, have shown that proton translocation is lateral rather than transversal with respect to the coupling membrane. Furthermore, the definition of the physical species involved in the transfer (proton, hydroxonium ion or proton currents) is still an unresolved issue, even though the latest acquisitions support the idea that protonic currents, difficult to measure, are involved. Moreover, FoF1-ATP synthase ubiquitous motor enzyme has the peculiarity (unlike most enzymes) of affecting the thermodynamic equilibrium of ATP synthesis. It seems that the concept of diffusion of the proton charge expressed more than two centuries ago by Theodor von Grotthuss is to be taken into consideration to resolve these issues. All these uncertainties remind us that also in biology it is necessary to consider the Heisenberg indeterminacy principle, which sets limits to analytical questions.


Assuntos
Transferência de Energia , Bombas de Próton/metabolismo , Força Próton-Motriz , Prótons , Animais , Transporte Biológico , Humanos , Concentração de Íons de Hidrogênio , Modelos Biológicos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...